

Scott Branlund, SE Senior Project Manager/Diving Officer BergerABAM Inc.

Focus of Presentation

- Develop assessment methodology
- Discuss how to determine structural demand on an aged facility
- Discuss how to determine structural capacity of an aged facility
- Repair/rehabilitation can be a next step
- Goal Check Capacity
 <u>></u> Demand

Similar Assessments

- Civil grading, paving, drainage, sanitary sewer
- Mechanical fire protection (wet & dry), water
- Electrical lighting, power
- Operations facility layout

Presentation Outline

- **Develop Assessment Methodology Assess Current Conditions Determine Demand Determine Capacity Obtain Owner Agreement Perform Analyses**
- Apply Assessment Methodology

Determine Current Conditions

- Perform record search
- Review document development
- Verify as-built conditions shown Modifications made after facility built Repairs made after facility built Update plans for current conditions
- Construction tolerances not reflected
- Select guidelines for assessment

Assess Current Conditions

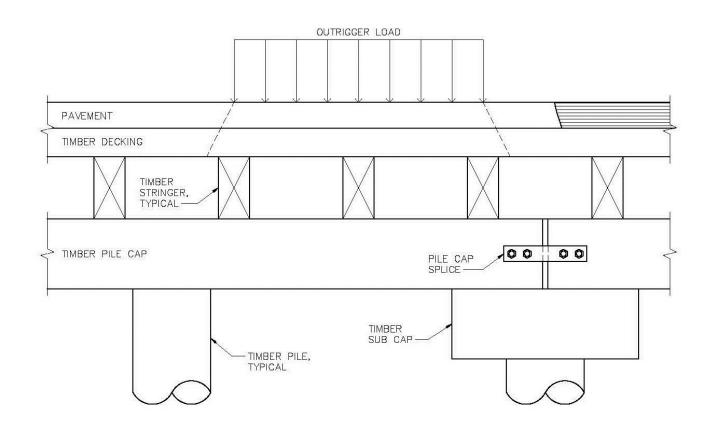
- ASCE Waterfront Facilities Inspection & Assessment – Manual No. 130 (2015)
- Multiple levels of inspection/assessment
- Baseline inspection level Verify dimensions/details
- Structural repair inspection level Record defect attributes
- Underdeck and top of deck Consider a laser scan survey

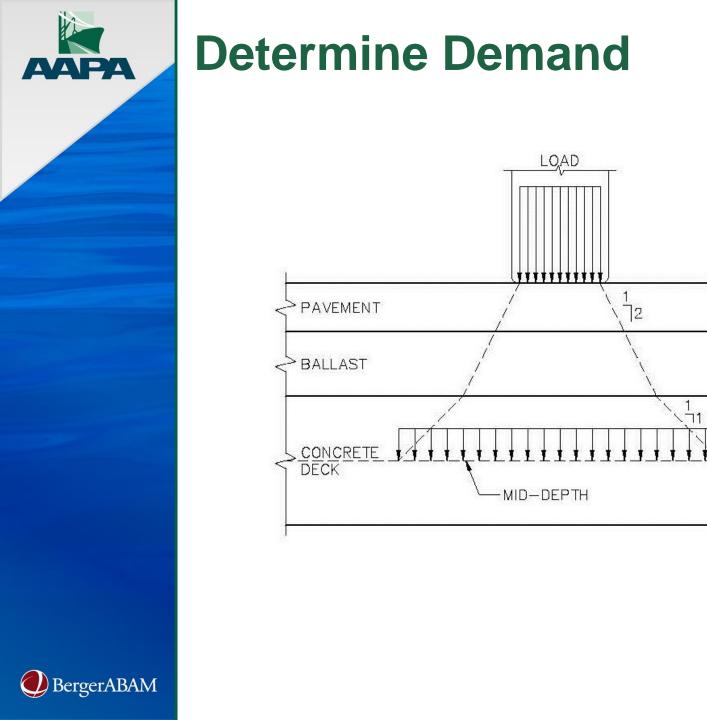
Assess Current Conditions

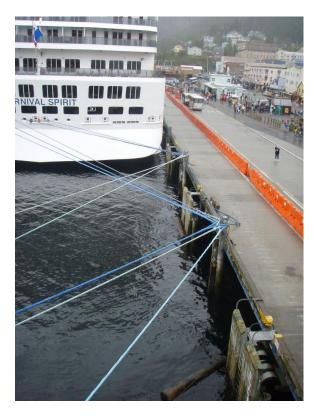
AAPA

Establish Demand

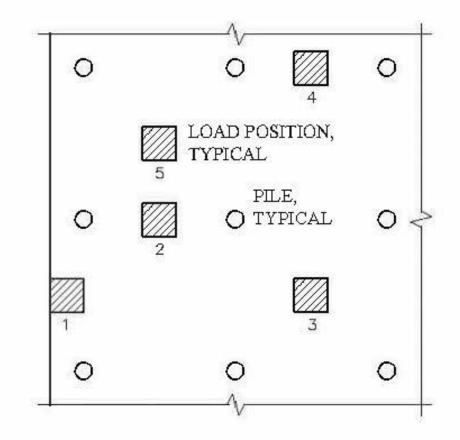
- Jointly Engineer, Owner, Tenant(s)
- Establish present and future use(s)
- Why is the assessment being performed?
- Minor changes methods, equipment
- Major changes new container cranes cargo to amphitheater cargo to cruise ship facility
- How long will the facility be in use?
- Do operation methods vary with tenants?




- Dead loads
- Concentrated live loads equipment
- Uniform live loads piles
- Berthing loads ships, barges, other
- Mooring loads wind, sail area, draft
- Seismic loads a separate presentation
- ASCE 7-10 Minimum Design Loads for Buildings and Other Structures
- AASHTO LRFD Bridge Design Specification, 7th Edition



- Moving vary location to maximize load
- Wind direction/speed, draft, sail area
- Mooring plan direction, elevation/angle Multiple lines? Tended? Limit devices?



Position – maximum moment (shear similar)

- Goal assess for operating conditions
- Goal check for extreme conditions
- Try to avoid assessment controlled by extreme conditions
- Give structural elements all available "credits"

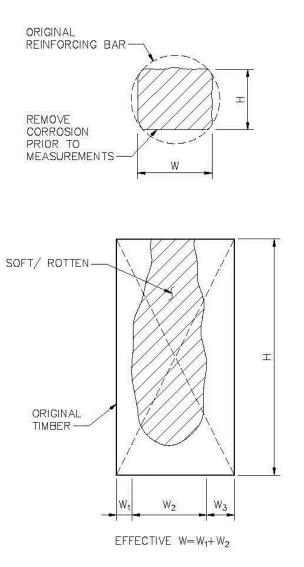
- Combine codes & standards Use provisions from different sources? Load factors and phi factors?
- Note building codes have shortcomings if used to evaluate marine structures
- Need engineering judgement when outside of recognized codes & standards
- Codes & standards AASHTO, ACI, AREMA, ASCE, Calif. Building Code 31f, PIANC, UFC

- International Building Code 2012 IBC Section 3405
- Building and non-building structures
- Jurisdiction having authority?
- Does jurisdiction have expertise?
- Corrosion/deterioration prevention in aggressive environment often secondary
- Example pan joist system, many edges

 Wharf does not behave like a building – judgement needed if using building code

- International Existing Building Code 2012 IEBC
- Building-related, but some guidance
- Many existing structures do not comply with current codes
- Rehabilitation often cost-prohibitive
- "Controlled departure" option from code?

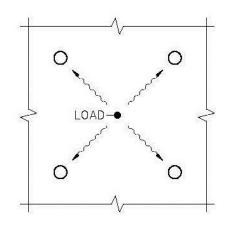
- Use accepted material properties for operating loads – "realistic"
- Consider higher values in earlier codes
- Consider higher material properties for extreme loads "controlled departure"
- Timber properties conservatively established, often have reserve capacity
- Concrete properties probabilistic basis
- Steel properties expected properties

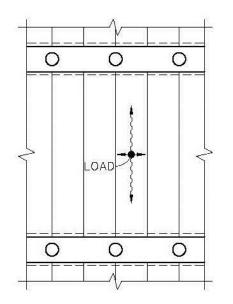


- Assess timber deterioration
 Visual, sounding, thermal imaging
 Drilling select locations
- Assess reinforced concrete deterioration Concrete section Corroded reinforcement, P/S strand
- Assess steel deterioration
 Visual calipers, scales
 Ultrasonic various technologies

- Account for deterioration processes
 Example volumetric expansion
- Establish rate of deterioration
- Reactions can take time to lower capacity
- Example decision to install jackets on 30-year old piles due to "traces of DEF"

- Selection of load factors (LF) uncertainty
- Want to select appropriate LF
- Consider normal loads versus extreme loads
- Example crane outrigger, tipping based
- Port LF=1.3 on outrigger load
- UFC currently LF=1.6 on outrigger load, proposed change to LF=1.3

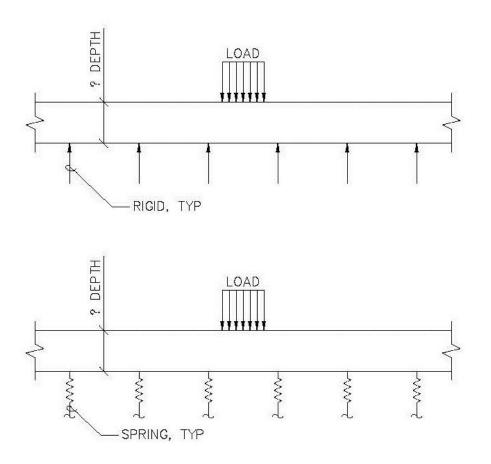




- Account for sequence of construction Shows how load introduced when built Locked-in stresses decrease over time?
- Account for phased construction over time
- Structural system difference(s) affects how load was distributed within structure
- Example cast-in-place concrete deck versus precast concrete deck panels

Obtain Owner Agreement

- Develop basis of design larger projects
- Meet with Owner and Tenant(s)
- Explain assessment approach Loads discussed earlier
- Identify risks
- Consider limitations
- Reach agreement with Owner & Tenant(s)
- Create memorandum of understanding

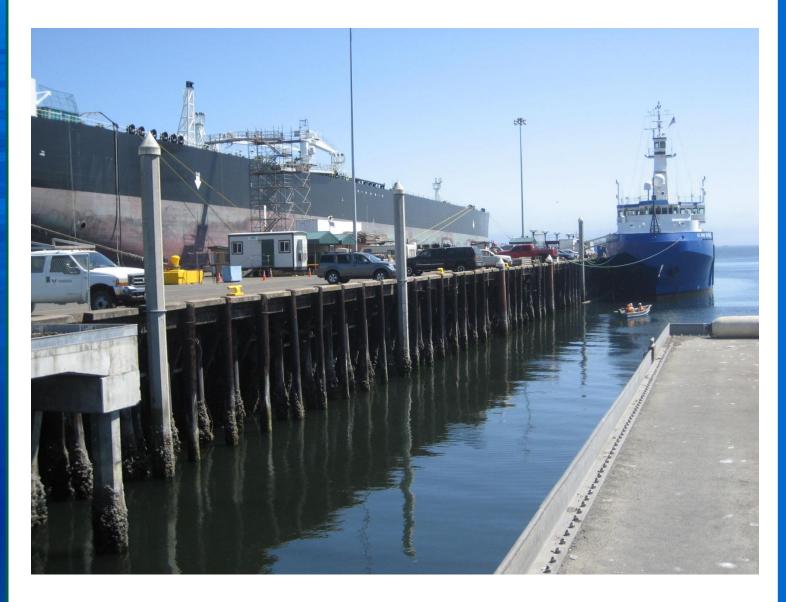


- Select applicable technique(s)
- Consider materials and construction
- Methods can vary simple to complex
- Staged or phased construction account for history of changes in load path
- Historical analyses less sophisticated
- Current analyses more sophisticated, more capacity used (less "reserve"?)

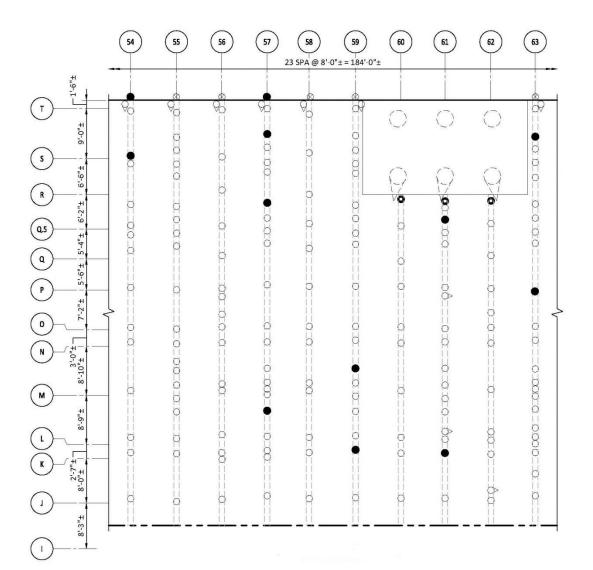
- Serviceability generally governs design of marine facilities except for seismic
- Exceptions sometimes based on life expectancy
- Example berthing/mooring, 5-year life No coating on steel elements Lower wind speed based on direction Controlled departure from allowables

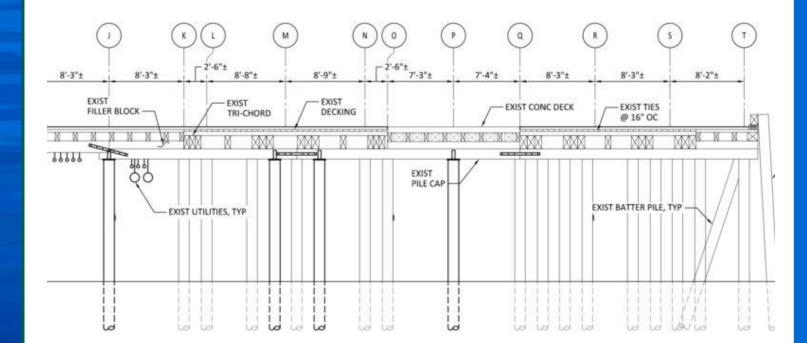
- Pile capacity versus time
- Timber maintenance program slows decrease
- Steel decrease unlikely if coated (above water) and CP system present and active (below water) in salt water
- Concrete often little or no decrease, adequate cover and lack of damage or lack of deterioration process

- Presentation of capacity most important Figures, tables, factors of safety
- Use of methodology best demonstrated by application to existing facilities
- 1 Timber pier, varying live loads
- 2 Concrete wharf, slope modifications
- 3 Concrete pier, proposed large crane



- Example 1 Timber Pier
- Existing timber piles and system deck
- Concern existing load rating charts not usable by equipment operators
- Loads determined with owner & tenant(s)
- Facility inspected, repairs performed
- Provide single composite plan of ratings/locations to equipment operators





ALLOWABLE LOADS

- 1. TERMINAL 1 ALLOWABLE LOADS REPRESENT THE CAPACITY OF THE STRUCTURE AFTER PROJECT REPAIRS ARE COMPLETE.
- 2. DEAD LOADS: ACTUAL WEIGHT OF ALL MATERIALS

3. UNIFORM LIVE LOADS, SEE TABLE 1, AND

Ā	BI	LE	1	

1

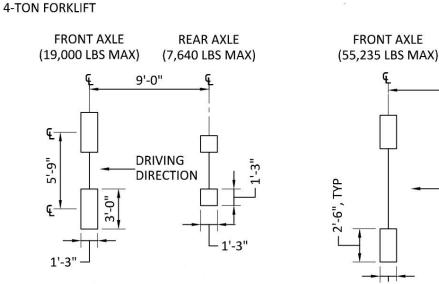
ZONE	ALLOWABLE UNIFORM LOADS (PSF)	4-TON FORKLIFT	HS-25 TRUCK
1	500	YES	YES
Z	500	YES	YES
3	600	YES	YES
4	600	YES	YES
J.	200	NO	NO
6	200	YES	YES
	250	YES	YES

4. CONCENTRATED LIVE LOADS, SEE TABLE 2, AND TABLE 2

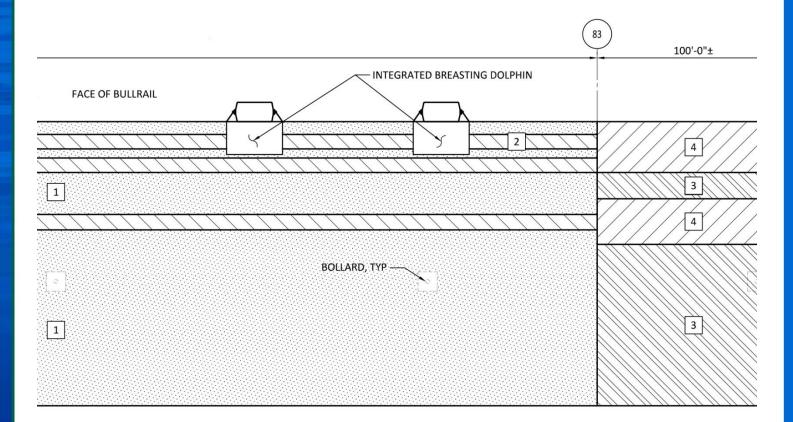
ALLOWABLE POINT LOADS (LBS)					
	POINT LOAD SIZES				
ZONE	18"x18"	24"x24"	36"x36"	48"x48"	6'x12' (d)
1	18,700	28,800	35,500	40,000	52,000
Z	18,900	66,400	66,400	66,400	152,300
3	17,800	21,700	30,100	39,100	99,200
A	26,600	35,000	55,000	83,700	99,200
J.	SEE (a)	SEE (a)	SEE (a)	SEE (a)	SEE (a)
6	17,100	19,700	27,200	35,000	SEE (b)
	SEE (c)	SEE (c)	SEE (c)	SEE (c)	SEE (c)

NOTE

- a. NO POINT LOADS ALLOWED.
- b. ALLOWABLE POINT LOADS FOR 6'x12' TIMBER MATS HAVE NOT BEEN DETERMINED FOR ZONE 6.

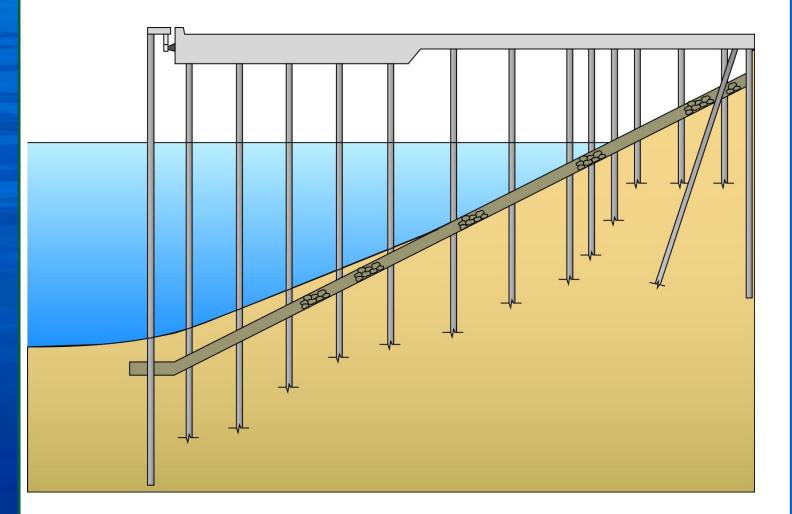

2

c. ALLOWABLE POINT LOADS WERE NOT DETERMINED FOR THIS ZONE.

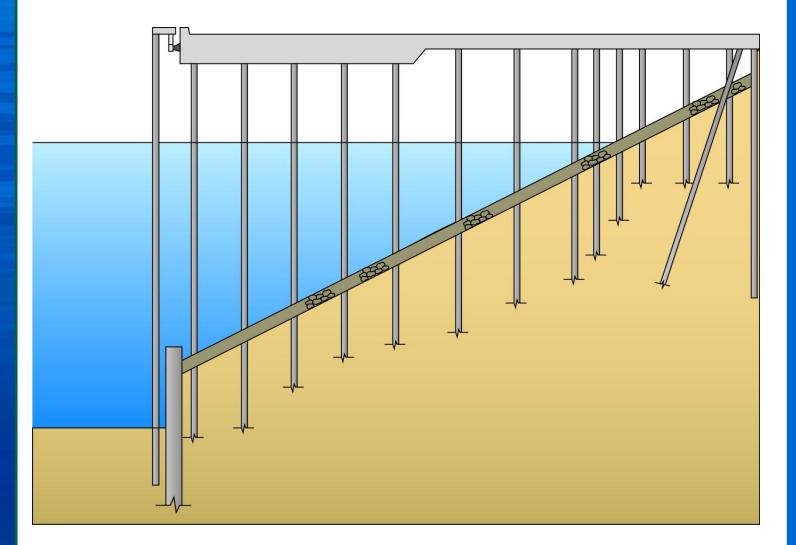

15", TYP →

CRANE

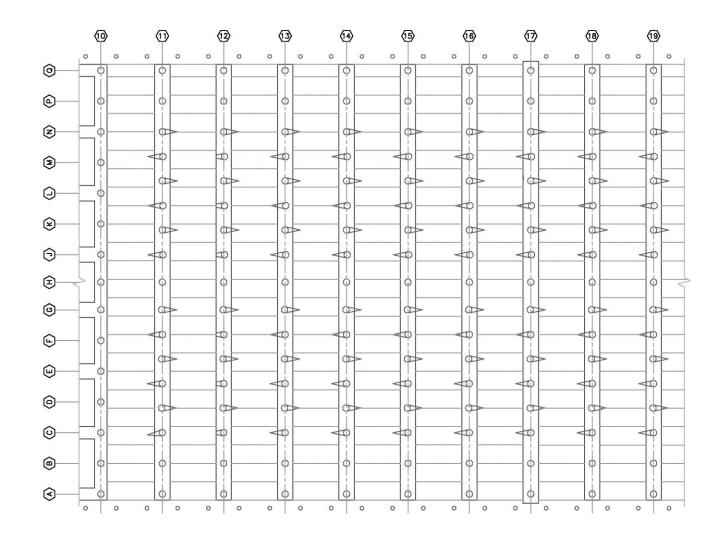
DergerABAM

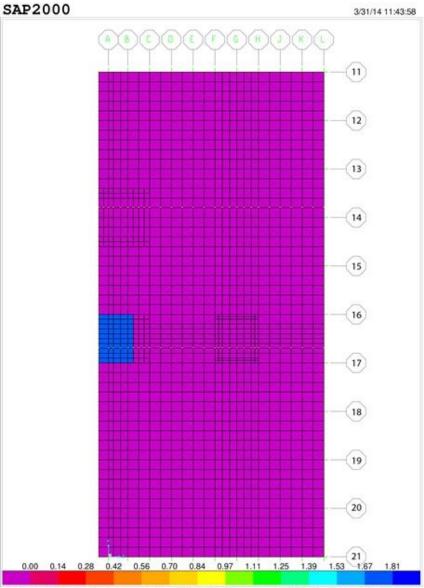


- Example 2 Slope at Concrete Wharf
- Dredging for deeper draft vessels
- Proposed construction dredge, install underwater wall, densify soil as needed
- Concern slope stability
- Establish factor of safety (FOS) for slope
- Goal work does not decrease FOS
- Note sometimes FOS<1 (seismic)

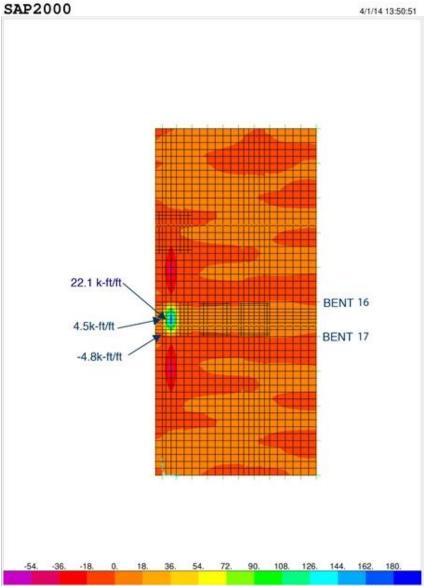


- Example 3 Concrete Pier
- Existing structure consisting of precast deck panels on cast-in-place concrete pile caps and piles
- Issue owner needed larger mobile crane on pier for heavy load handling
- Chart of load versus radius showing load handling limits to operators





AAPA



SAP2000 v15.2.1 - File:Pier 1 Model_1.0 - Area Uniform (HMK 6507 Case 3) (GLOBAL - Gravity) - Kip, ft, F Units

HMK 280E Maximum Gross Pick Capacity				
Pick Radius (meters)	Pick Radius (ft)	Capacity (metric tons)	Capacity (short tons)	
20	65.6	44	48	
21	68.9	44	48	
22	72.2	44	48	

48	157.5	9	9
49	160.8	8	8
50	164	7	7

* Gross = Weight of box plus contents.

Maximum Spreader Weight = 9.4metric tons (22,700lbs.)

Operational Requirements

- Single outriggers only will be used
- Single outriggers will be 2 meters by 4.5 meters (6.56 feet by 14.76 feet)
- All outriggers are fully extended
- The adjustable spreader weighs 9.4 metric tons (10.4 short tons)

• Allowable loads, including spreader weight, will not exceed the Gottwald published radius/load rating for general cargo operation with a 1.5 tipping safety factor (66 percent)

Conclusions

- Multiple approaches available to determine capacity of aged assets
- Accurately describe asset conditions
- Determine demands
- Determine capacities
- Obtain owner and tenant(s) agreement
- Perform analyses Capacity > Demand?
- Provide results in a usable format Single plan if possible

Thanks

- Kim Crow
- Mike Dodson
- Daryl English
- Joe Galloway
- TJ Schilling
- Elmer Ozolin

